skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhu, Xiaoshuai"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2026
  2. Abstract With the aid of high-resolution spatial and temporal observations from the Goode Solar Telescope, we present an investigation of the emergence, coalescence, and submergence of a moving magnetic feature (MMF) in the region surrounding a magnetic pore located at the periphery of a large sunspot. The results show that the MMF has a magnetic field strength greater than 500 G and is dominated by the horizontal magnetic component. We observe upflow at the inner part and downflow at the outer part, indicating a pattern of Evershed flow. The MMF emergence is accompanied by the expansion of a granule, which has several striations inside just like the twisted features found in the penumbra filament. Our analysis shows that although these striations have different properties of magnetic field and kinematics during the expansion of the granule, the overall magnetic and dynamic properties of the MMF remain stable. We find that the region where the MMF emerges and submerges becomes more penumbra-like, i.e., adjacent positive and negative values of elongated magnetic features that are parallel to each other, while the optical penumbra-like features are not apparent at the same time. Our work indicates that the dynamics of the MMF near the magnetic pore is important for the development of filamentary structure. The magnetic configuration produced by an MMF together with the elongation of a granule could thus be key to understand the formation of penumbra filaments. 
    more » « less